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Motivation: seismic oil and gas exploration

Problems addressed:
1 Imaging: qualitative

estimation of reflectors
on top of known velocity
model

2 Multiple removal: from
measured data produce a
new data set with only
primary reflection events

Common framework:
data-driven Reduced
Order Models (ROM)

A.V. Mamonov ROMs for imaging and multiple removal 2 / 26



Forward model: acoustic wave equation

Acoustic wave equation in the time domain

utt = Au in Ω, t ∈ [0,T ]

with initial conditions

u|t=0 = B, ut |t=0 = 0,

sources are columns of B ∈ RN×m

The spatial operator A ∈ RN×N is a (symmetrized) fine grid
discretization of

A = c2∆

with appropriate boundary conditions
Wavefields for all sources are columns of

u(t) = cos(t
√
−A)B ∈ RN×m
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Data model and problem formulations

For simplicity assume that sources and receivers are collocated,
receiver matrix is also B
The data model is

D(t) = BT u(t) = BT cos(t
√
−A)B,

an m ×m matrix function of time

Problem formulations:
1 Imaging: given D(t) estimate “reflectors”, i.e. discontinuities of c
2 Multiple removal: given D(t) obtain “Born” data set F(t) with

multiple reflection events removed
In both cases we are provided with a kinematic model, a smooth
non-reflective velocity c0

A.V. Mamonov ROMs for imaging and multiple removal 4 / 26



Reduced order models
Data is always discretely sampled, say uniformly at tk = kτ
The choice of τ is very important, optimally τ around Nyquist rate
Discrete data samples are

Dk = D(kτ) = BT cos
(

kτ
√
−A
)

B = BT Tk (P)B,

where Tk is Chebyshev polynomial and the propagator (Green’s
function over small time τ ) is

P = cos
(
τ
√
−A
)
∈ RN×N

A reduced order model (ROM) P̃ ∈ Rmn×mn, B̃ ∈ Rmn×m should
fit the data

Dk = BT Tk (P)B = B̃T Tk (P̃)B̃, k = 0,1, . . . ,2n − 1
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Projection ROMs

Projection ROMs are of the form

P̃ = VT PV, B̃ = VT B,

where V is an orthonormal basis for some subspace
What subspace to project on to fit the data?
Consider a matrix of wavefield snapshots

U = [u0,u1, . . . ,un−1] ∈ RN×mn, uk = u(kτ) = Tk (P)B

We must project on Krylov subspace

Kn(P,B) = colspan[B,PB, . . . ,Pn−1B] = colspan U

Reasoning: the data only knows about what P does to
wavefield snapshots uk
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ROM from measured data

Wavefields in the whole domain U are unknown, thus V is
unknown
How to obtain ROM from just the data Dk?
Data does not give us U, but it gives us inner products!
Multiplicative property of Chebyshev polynomials

Ti(x)Tj(x) =
1
2

(Ti+j(x) + T|i−j|(x))

Since uk = Tk (P)B and Dk = BT Tk (P)B we get

(UT U)i,j = uT
i uj =

1
2

(Di+j + Di−j),

(UT PU)i,j = uT
i Puj =

1
4

(Dj+i+1 + Dj−i+1 + Dj+i−1 + Dj−i−1)
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ROM from measured data

Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure

U = VLT , equivalently V = UL−T ,

where L is a block Cholesky factor of the Gramian UT U known
from the data

UT U = LLT

The projection is given by

P̃ = VT PV = L−1
(

UT PU
)

L−T ,

where UT PU is also known from the data
Cholesky factorization is essential, (block) lower triangular
structure is the linear algebraic equivalent of causality
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Problem 1: Imaging

ROM is a projection, we can use backprojection

If span(U) is suffiently rich, then columns of VVT should be good
approximations of δ-functions, hence

P ≈ VVT PVVT = VP̃VT

As before, U and V are unknown

We have an approximate kinematic model, i.e. the travel times

Equivalent to knowing a smooth velocity c0

For known c0 we can compute everything, including

U0, V0, P̃0
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ROM backprojection

Take backprojection P ≈ VP̃VT and make another approximation:
replace unknown V with V0

P ≈ V0P̃VT
0

For the kinematic model we know V0 exactly

P0 ≈ V0P̃0VT
0

Approximate perturbation of the propagator

P− P0 ≈ V0(P̃− P̃0)VT
0

is essentially the perturbation of the Green’s function

δG(x , y) = G(x , y , τ)−G0(x , y , τ)

But δG(x , y) depends on two variables x , y ∈ Ω,
how do we get a single image?
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Backprojection imaging functional

Take the imaging functional I to be

I(x) ≈ δG(x , x) = G(x , x , τ)−G0(x , x , τ), x ∈ Ω

In matrix form it means taking the diagonal

I = diag
(

V0(P̃− P̃0)VT
0

)
≈ diag(P− P0)

Note that

I = diag
(

[V0VT ] P [VVT
0 ]− [V0VT

0 ] P0 [V0VT
0 ]
)

Thus, approximation quality depends only on how well columns of
VVT

0 and V0VT
0 approximate δ-functions
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Simple example: layered model
True c ROM backprojection image I

RTM imageA simple layered model, p = 32
sources/receivers (black ×)
Constant velocity kinematic
model c0 = 1500 m/s
Multiple reflections from waves
bouncing between layers and
reflective top surface
Each multiple creates an RTM
artifact below actual layers
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 10τ

t = 15τ

t = 20τ
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 25τ

t = 30τ

t = 35τ
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Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 345 m

y = 510 m

y = 675 m

A.V. Mamonov ROMs for imaging and multiple removal 15 / 26



Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 840 m

y = 1020 m

y = 1185 m
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High contrast example: hydraulic fractures
True c RTM image

Important application: hydraulic fracturing

Three fractures 10 cm wide each

Very high contrasts: c = 4500 m/s in the surrounding rock,
c = 1500 m/s in the fluid inside fractures
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High contrast example: hydraulic fractures
True c ROM backprojection image I

Important application: hydraulic fracturing

Three fractures 10 cm wide each

Very high contrasts: c = 4500 m/s in the surrounding rock,
c = 1500 m/s in the fluid inside fractures
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Large scale example: Marmousi model
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Problem 2: multiple removal

Introduce Data-to-Born (DtB) transform: compute ROM from
original data, then generate a new data set with primary reflection
events only
Born with respect to what?
Consider wave equation in the form

utt = σc∇ ·
(c
σ
∇u
)
,

where acoustic impedance σ = ρc
Assume c = c0 is a known kinematic model
Only the impedance σ changes
Above assumptions are for derivation only, the method works
even if they are not satisfied
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Born approximation
Can show that

P ≈ I − τ2

2
LqLT

q ,

where
Lq = −c∇ · +

1
2

c∇q·, LT
q = c∇+

1
2

c∇q,

are affine in q = log σ
Consider Born approximation (linearization) with respect to q
around known c = c0
Perform second Cholesky factorization on ROM

2
τ2 (̃I− P̃) = L̃qL̃T

q

Cholesky factors L̃q, L̃T
q are approximately affine in q, thus the

perturbation
L̃q − L̃0

is approximately linear in q
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Data-to-Born transform

1 Compute P̃ from D and P̃0 from D0 corresponding to q ≡ 0 (σ ≡ 1)
2 Perform second Cholesky factorization, find L̃q and L̃0

3 Form the perturbation

L̃ε = L̃0 + ε(L̃q − L̃0), affine in εq

4 Propagate the perturbation

Dε
k = B̃T Tk

(̃
I− τ2

2
L̃εL̃T

ε

)
B̃

5 Differentiate to obtain DtB transformed data

Fk = D0
k +

dDε
k

dε

∣∣∣∣
ε=0

, k = 0,1, . . . ,2n − 1

A.V. Mamonov ROMs for imaging and multiple removal 22 / 26



Example: DtB seismogram comparison
Impedance σ = ρc Velocity c

Original data Dk − D0
k DtB transformed data Fk − D0

k
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Example: DtB+RTM imaging

Impedance σ = ρc Velocity c

RTM image from original data RTM image from DtB data
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Conclusions and future work

ROMs for imaging and multiple removal (DtB)
Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky
Implicit orthogonalization of wavefield snapshots: removal of
multiples in backprojection imaging and DtB transform
Existing linearized imaging (RTM) and inversion (LS-RTM)
methods can be applied to DtB transformed data

Future work:
Data completion for partial data (including monostatic, aka
backscattering measurements)
Elasticity: promising preliminary results
Stability and noise effects (SVD truncation of the Gramian, etc.)
Frequency domain analogue (data-driven PML)
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